Accurate determination of anisotropic thermal conductivity for ultrathin composite film

Author:

Zhu Qiu-Hao,Peng Jing-Song,Guo Xiao,Zhang Ru-Xuan,Jiang Lei,Cheng Qun-Feng,Liang Wen-Jie

Abstract

Highly anisotropic thermal conductive materials are of significance in thermal management applications. However, accurate determination of ultrathin composite thermal properties is a daunting task due to the tiny thermal conductance, severely hindering the further exploration of novel efficient thermal management materials, especially for size-confined environments. In this work, by utilizing a hybrid measuring method, we demonstrate an accurate determination of thermal properties for montmorillonite/reduced graphene oxide (MMT/rGO) composite film with a thickness range from 0.2 μm to 2 μm. The in-plane thermal conductivity measurement is realized by one-dimensional (1D) steady-state heat conduction approach while the cross-plane one is achieved via a modified 3ω method. As-measured thermal conductivity results are cross-checked with different methods and known materials, revealing the high measurement accuracy. A high anisotropic ratio of 60.5, independent of composite thickness, is observed in our measurements, further ensuring the negligible measurement error. Notably, our work develops an effective approach to the determination of ultrathin composite thermal conductivity, which may promote the development of ultrathin composites for potential thermal-related applications.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3