Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit

Author:

Wang Ying,Qi Feng,Zhang Zi-Xu,Wang Jin-Kuan

Abstract

Terahertz (THz) imaging has drawn significant attention because THz wave has a unique capability to transient, ultra-wide spectrum and low photon energy. However, the low resolution has always been a problem due to its long wavelength, limiting their application of fields practical use. In this paper, we proposed a complex one-shot super-resolution (COSSR) framework based on a complex convolution neural network to restore superior THz images at 0.35 times wavelength by extracting features directly from a reference measured sample and groundtruth without the measured PSF. Compared with real convolution neural network-based approaches and complex zero-shot super-resolution (CZSSR), COSSR delivers at least 6.67, 0.003, and 6.96% superior higher imaging efficacy in terms of peak signal to noise ratio (PSNR), mean square error (MSE), and structural similarity index measure (SSIM), respectively, for the analyzed data. Additionally, the proposed method is experimentally demonstrated to have a good generalization and to perform well on measured data. The COSSR provides a new pathway for THz imaging super-resolution (SR) reconstruction below the diffraction limit.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3