Simulations on the multi-shell target ignition driven by radiation pulse in Z-pinch dynamic hohlraum*

Author:

Chen Shi-Jia,Ma Yan-Yun,Wu Fu-Yuan,Yang Xiao-Hu,Yuan Yun,Cui Ye,Cui Ye,Ramis Rafael

Abstract

We present the first simulation results of a multi-shell target ignition driven by Z-pinch dynamic hohlraum radiation pulse. The radiation pulse is produced with a special Z-pinch dynamic hohlraum configuration, where the hohlraum is composed of a single metal liner, a low-Z plastic foam, and a high-Z metallic foam. The implosion dynamics of a hohlraum and a multi-shell target are investigated separately by the one-dimensional code MULTI-IFE. When the peak drive current is 50 MA, simulations suggest that an x-ray pulse with nearly constant radiation temperature (∼ 310 eV) and a duration about 9 ns can be obtained. A small multi-shell target with a radius of 1.35 mm driven by this radiation pulse is able to achieve volumetric ignition with an energy gain (G) about 6.19, where G is the ratio of the yield to the absorbed radiation. Through this research, we better understand the effects of non-uniformities and hydrodynamics instabilities in Z-pinch dynamic hohlraum.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3