Experimental investigation of omnidirectional multiphysics bilayer invisibility cloak with anisotropic geometry

Author:

Feng Huolei,Zhang Xingwei,Zhou Limin,Zhang Yuekai,Ni Yushan

Abstract

Abstract Thermal-electric bilayer invisibility cloak can prevent the heat flux and electric current from touching the object without distorting the external temperature and electric potential fields, simultaneously. In this paper, we design an omnidirectional thermal-electric invisibility cloak with anisotropic geometry. Based on the theory of neutral inclusion, the anisotropic effective thermal and electric conductivities of confocal elliptical bilayer core-shell structure are derived, thus obtaining the anisotropic matrix material to eliminate the external disturbances omnidirectionally. The inner shell of the cloak is selected as insulating material to shield the heat flux and electric current. Then, the omnidirectional thermal-electric cloaking effect is verified numerically and experimentally based on the theoretical anisotropic matrix and manufactured composite structure, respectively. Furthermore, we achieve the thermal-electric cloaking effect under a specific direction of heat flux and electric current using the isotropic natural materials to broaden the selection range of materials. The method proposed to eliminate anisotropy and achieve the omnidirectional effect could also be expanded to other different physical fields for the metadevices with different functions.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3