Classification and structural characteristics of amorphous materials based on interpretable deep learning

Author:

Cui 崔 Jiamei 佳梅,Li 李 Yunjie 韵洁,Zhao 赵 Cai 偲,Zheng 郑 Wen 文

Abstract

Defining the structure characteristics of amorphous materials is one of the fundamental problems that need to be solved urgently in complex materials because of their complex structure and long-range disorder. In this study, we develop an interpretable deep learning model capable of accurately classifying amorphous configurations and characterizing their structural properties. The results demonstrate that the multi-dimensional hybrid convolutional neural network can classify the two-dimensional (2D) liquids and amorphous solids of molecular dynamics simulation. The classification process does not make a priori assumptions on the amorphous particle environment, and the accuracy is 92.75%, which is better than other convolutional neural networks. Moreover, our model utilizes the gradient-weighted activation-like mapping method, which generates activation-like heat maps that can precisely identify important structures in the amorphous configuration maps. We obtain an order parameter from the heatmap and conduct finite scale analysis of this parameter. Our findings demonstrate that the order parameter effectively captures the amorphous phase transition process across various systems. These results hold significant scientific implications for the study of amorphous structural characteristics via deep learning.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3