Entrainment mechanism of the cyanobacterial circadian clock induced by oxidized quinone*

Author:

Li Ying,Zhang Guang-Kun,Song Zi-Gen

Abstract

The circadian clock is a self-sustained biological oscillator which can be entrained by environmental signals. The cyanobacteria circadian clock is the simplest one, which is composed of the proteins KaiA, KaiB and KaiC. The phosphorylation/dephosphorylation state of KaiC exhibits a circadian oscillator. KaiA and KaiB activate KaiC phosphorylation and dephosphorylation respectively. CikA competing with KaiA for the same binding site on KaiB affects the phosphorylation state of KaiC. Quinone is a signaling molecule for entraining the cyanobacterial circadian clock which is oxidized at the onset of darkness and reduced at the onset of light, reflecting the environmental light–dark cycle. KaiA and CikA can sense external signals by detecting the oxidation state of quinone. However, the entrainment mechanism is far from clear. We develop an enhanced mathematical model including oxidized quinone sensed by KaiA and CikA, with which we present a detailed study on the entrainment of the cyanobacteria circadian clock induced by quinone signals. We find that KaiA and CikA sensing oxidized quinone pulse are related to phase advance and delay, respectively. The time of oxidized quinone pulse addition plays a key role in the phase shifts. The combination of KaiA and CikA is beneficial to the generation of entrainment, and the increase of signal intensity reduces the entrainment phase. This study provides a theoretical reference for biological research and helps us understand the dynamical mechanisms of cyanobacteria circadian clock.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3