Optoelectronic memristor for neuromorphic computing*

Author:

Xue Wuhong,Ci Wenjuan,Xu Xiao-Hong,Liu Gang

Abstract

With the need of the internet of things, big data, and artificial intelligence, creating new computing architecture is greatly desired for handling data-intensive tasks. Human brain can simultaneously process and store information, which would reduce the power consumption while improve the efficiency of computing. Therefore, the development of brain-like intelligent device and the construction of brain-like computation are important breakthroughs in the field of artificial intelligence. Memristor, as the fourth fundamental circuit element, is an ideal synaptic simulator due to its integration of storage and processing characteristics, and very similar activities and the working mechanism to synapses among neurons which are the most numerous components of the brains. In particular, memristive synaptic devices with optoelectronic responding capability have the benefits of storing and processing transmitted optical signals with wide bandwidth, ultrafast data operation speed, low power consumption, and low cross-talk, which is important for building efficient brain-like computing networks. Herein, we review recent progresses in optoelectronic memristor for neuromorphic computing, including the optoelectronic memristive materials, working principles, applications, as well as the current challenges and the future development of the optoelectronic memristor.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3