Effects of bismuth on structural and dielectric properties of cobalt-cadmium spinel ferrites fabricated via micro-emulsion route

Author:

Ahmed Sheikh Furhaj,Khalid Muhammad,Shahzad Shifa Muhammad,Noor ul Huda Khan Asghar H M,Aslam Sameen,Perveen Ayesha,ur Rehman Jalil,Azhar Khan Muhammad,Abbas Gilani Zaheer

Abstract

Spinel ferrites have a significant role in high-tech applications. In the present work nano-crystalline ferrites having general formula Co0.5Cd0.5Bi x Fe2−x O4 with (x = 0.0, 0.05, 0.1, 0.15, 0.2, and 0.25) are synthesized via micro-emulsion route. Powder x-ray diffraction (XRD) studies discover the FCC spinel structure. Crystalline size is calculated in a range of 11 nm–15 nm. Lattice parameter calculations are reduced due to its substitution which leads to the exchange of large ionic radius of Fe3+ for small ionic radius of Bi3+. The x-ray density is analyzed to increase with doping. Fourier transform infrared spectroscopy (FTIR) is performed to analyze absorption band spectra. The two absorption bands are observed in a range of 400 cm−1–600 cm−1, and they are the characteristic feature of spinel structure. Thermo-gravimetric analysis (TGA) reveals the total weight loss of nearly 1.98%. Dielectric analysis is carried out by impedance analyzer in a frequency span from 1 MHz to 3 GHz by using the Maxwell Wagner model. Dielectric studies reveal the decrease of dielectric parameters. The alternating current (AC) conductivity exhibits a plane behavior in a low frequency range and it increases with the applied frequency increasing. This is attributed to the grain effects in a high frequency range or may be due to the reduction of porosity. Real and imaginary part of impedance show the decreasing trend which corresponds to the grain boundary action. The imaginary modulus shows the occurrence of peak that helps to understand the interfacial polarization. Cole-Cole graph shows a single semicircle which confirms that the conduction mechanism is due to the grain boundaries at low frequency. Dielectric studies reveal the applicability of these ferrites in high frequency equipment, microwave applications, high storage media, and semiconductor devices.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3