A new algorithm based on C–V characteristics to extract the epitaxy layer parameters for power devices with the consideration of termination*

Author:

Wu Jiupeng,Ren Na,Sheng Kuang

Abstract

Doping concentration and thickness of an epitaxy layer are the most essential parameters for power devices. The conventional algorithm extracts these two parameters by calculating the doping profile from its capacitance-voltage (CV) characteristics. Such an algorithm treats the device as a parallel-plane junction and ignores the influence of the terminations. The epitaxy layer doping concentration tends to be overestimated and the thickness underestimated. In order to obtain the epitaxy layer parameters with higher accuracy, a new algorithm applicable for devices with field limited ring (FLR) terminations is proposed in this paper. This new algorithm is also based on the CV characteristics and considers the extension manner of the depletion region under the FLR termination. Such an extension manner depends on the design parameters of the FLR termination and is studied in detail by simulation and modeling. The analytical expressions of the device CV characteristics and the effective doping profile are derived. More accurate epitaxy layer parameters can be extracted by fitting the effective doping profile expression to the CV doping profile calculated from the CV characteristics. The relationship between the horizontal extension width and the vertical depth of the depletion region is also acquired. The credibility of the new algorithm is verified by experiments. The applicability of our new algorithm to FLR/field plate combining terminations is also discussed. Our new algorithm acts as a powerful tool for analyses and improvements of power devices.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3