Real time high accuracy phase contrast imaging with parallel acquisition speckle tracking*

Author:

Hu Zhe,Hua Wen-Qiang,Wang Jie

Abstract

X-ray speckle tracking based methods can provide results with best reported angular accuracy up to 2 nrad. However, duo to the multi-frame requirement for phase retrieval and the possible instability of the x-ray beam, mechanical and background vibration, the actual accuracy will inevitably be degraded by these time-dependent fluctuations. Therefore, not only spatial position, but also temporal features of the speckle patterns need to be considered in order to maintain the superiority of the speckle-based methods. In this paper, we propose a parallel acquisition method with advantages of real time and high accuracy, which has potential applicability to dynamic samples imaging as well as on-line beam monitoring. Through simulations, we demonstrate that the proposed method can reduce the phase error caused by the fluctuations to 1% at most compared with current speckle tracking methods. Meanwhile, it can keep the accuracy deterioration within 0.03 nrad, making the high theoretical accuracy a reality. Also, we find that waveforms of the incident beam have a little impact on the phase retrieved and will not influence the actual accuracy, which relaxes the requirements for speckle-based experiments.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3