Some predictions of a validated physical model of Pt–Rh thermocouple drift above 1200 °C

Author:

Pearce Jonathan VORCID

Abstract

Abstract A simple model was recently presented which relates the electromotive force (emf) drift rate of Pt–Rh thermoelements to the vapour pressure of Pt and Rh oxides. The model assumes that the evaporation of these oxides gives rise to a continuously changing concentration of Pt and Rh, at different rates along the length of the wires, which causes a change in the Seebeck coefficient. The model was tested by comparison with high precision measurements under comparable circumstances. By considering various thermocouples of different compositions, it was demonstrated that the calculated drift rate is proportional to the measured drift rate, which represented a validation of the model. In the current study, the model is used to make some predictions concerning the set of optimum ‘zero-drift’ thermocouple wire compositions above 1200 °C. It is shown that for a wire of Pt–Rh with more than a few %Rh, there is a corresponding wire to make a thermocouple which has nearly zero thermoelectric drift, and that this is almost independent of temperature. Remarkably, this optimum relation is found to agree very well with a previous optimisation that was based on an empirical technique. An intriguing finding is that when the measurement junction is at around 1285 °C, the drift rate is very low, regardless of wire composition; the reason for this is explained by the model. This has implications for thermocouple drift testing at temperatures close to 1285 °C, which may be unreliable if the drift is inherently low regardless of the composition of the two thermoelements, as suggested by the model. The melting point of Co–C, 1324 °C, commonly used for thermocouple drift assessment, is far enough away from 1285 °C for this effect not to be a problem.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3