Interface energetics make devices

Author:

Duhm SteffenORCID

Abstract

Abstract The energy-level alignment at the ubiquitous interfaces of optoelectronic devices is decisive for their performance and almost all pertinent publications include energy-level diagrams (ELDs). However, in most of these ELDs vacuum-level alignment across the complete heterojunction is assumed, which is oversimplified. On the contrary, the functioning of virtually all optoelectronic devices relies on interface phenomena like band bending, interface dipoles or potential drops. Consequently, such oversimplified ELDs do not help to understand the working mechanism of devices and have limited meaning. In this focus article, we give best practice rules for drawing ELDs: (1) give references for all the values of an ELD. (2) Mention the methods which have been used to obtain these values. (3) Add a disclaimer about the limitations of the ELD. (4) Measure as many energy levels as possible.

Funder

National Natural Science Foundation of China

Higher Education Discipline Innovation Project

Joint International Research Laboratory of Carbon-Based Functional Materials and Devices

Collaborative Innovation Center of Suzhou Nano Science and Technology

Publisher

IOP Publishing

Subject

Electrochemistry,Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3