Strain effect on the high T c superconductor YBa2Cu3O7: an ab initio study comparing bulk and monolayer models

Author:

Yelpo CarlaORCID,Favre SofíaORCID,Ariosa DanielORCID,Faccio RicardoORCID

Abstract

Abstract In this work, the effect of strain on the vibrational and electronic properties of the YBa2Cu3O7 compound was studied through ab initio calculations. For this, two structural models were used: a bulk model and a surface model (a monolayer with CuO2 and BaO as the terminating layers). The phonon spectra was calculated for both structures under different levels of c axis strain. The most appreciable change occurs in the vibrational properties, and in the surface case. From the simulation of the Raman spectra, we were able to quantify the Raman shift ratio as a function of the applied strain, and analyzed its behavior in terms of the overlap population of the different bonds and the reduced mass of selected phonons. The effect of the level of deformation on the band structure and the electronic density of states is small for both structures, although more noticeable in the case of the surface model. In both cases, tendencies are observed when the fine features of the band structure are analyzed by means of the tight binding model. Due to the lower symmetry, the surface model also shows modifications of the bands related to the CuO2 planes.

Funder

Comisión Sectorial de Investigación Científica

Argonne National Laboratory

Comisión Académica de posgrado CAP

Agencia Nacional de Investigación e Innovación

Publisher

IOP Publishing

Subject

Electrochemistry,Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3