Interaction of xanthan gums with galacto- and glucomannans. Part II: Heat induced synergistic gelation mechanism and their interaction with salt

Author:

Ghebremedhin MartaORCID,Schreiber ChristineORCID,Zielbauer Birgitta,Dietz Natalie,Vilgis Thomas AORCID

Abstract

Abstract In this study the heat induced synergistic gelation of different hydrocolloid solutions, xanthan gum types (XG) in mixture with galactomannans like guar gum (GG), locust bean gum (LBG) and konjac glucomannan (KGM) is investigated. The physical mechanism of the synergy in thickening and gelling of blends depends on the monomer structure, the molecular weight, the charge, the polarity, and the chain stiffness of the hydrocolloids. Particularly the properties of the electrically neutral galacto- and glucomannans mixed in combination with xanthan gum strongly affect the synergistic effects. These are influenced by the number and distribution of mannan side chains and thus their flexibility. While the pure components do not show gelation on their own, they form viscoelastic solutions or even gels when mixed together and heated. In this study, rheological properties of the resulting composite gels of 0.5% (w/w) were examined under different physicochemical and thermal conditions. Focus was laid on thermally induced gels, as these gels showed higher synergistic effects compared to the non-heated ones. The gelation mechanisms were investigated by strain and temperature dependent oscillatory rheological measurements. Blends with XG-GG (20:80) showed the weakest synergism, followed by XG-LBG blends (20:80), whereas XG-KGM (60:40) blends showed the highest increase of the storage modulus. This can be explained by different local interactions in combinations with the flexibility of the various components. Furthermore, the impact of monovalent salt on the interactions was investigated. Addition of sodium chloride at 0.05% and 0.5% (w/w) concentrations influenced the gelling due to Coulomb screening of the negative charges of XG. Consequently, the synergism, in particular the storage modulus, is strongly affected by variation in salt concentration. We propose specific models based on the gel formation in case of XG-LBG and XG-KGM blends, whereas XG-GG shows an entropic phase separation due to flexibility of GG.

Funder

Jungbunzlauer Ladenburg GmbH

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Reference46 articles.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3