Low-energy optical phonons induce glassy-like vibrational and thermal anomalies in ordered crystals

Author:

Baggioli MatteoORCID,Zaccone AlessioORCID

Abstract

Abstract It is widely accepted that structural glasses and disordered crystals exhibit anomalies in their thermal, mechanical and acoustic properties as manifestations of the breakdown of the long-wavelength approximation in a disordered dissipative environment. However, the same type of glassy-like anomalies (i.e. boson peak in the vibrational density of states (VDOS) above the Debye level, peak in the normalized specific heat at T ≃ 10 K etc) have been recently observed also in perfectly ordered crystals, including thermoelectric compounds. Here we present a theory that predicts these surprising effects in perfectly ordered crystals as a result of low-lying (soft) optical phonons. In particular, it is seen that a strong boson peak anomaly (low-energy excess of modes) in the VDOS can be due almost entirely to the presence of low-energy optical phonons, provided that their energy is comparable to that of the acoustic modes at the Brillouin zone boundary. The boson peak is predicted also to occur in the heat capacity at low T. In presence of strong damping (which might be due to anharmonicities in the ordered crystals), these optical phonons contribute to the low-T deviation from Debye’s T 3 law, producing a linear-in-T behavior which is typical of glasses, even though no assumptions of disorder whatsoever are made in the model. These findings are relevant for understanding and tuning thermal transport properties of thermoelectric compounds, and possibly for the enhancement of electron–phonon superconductivity.

Funder

MINECO’s “Centro de Excelencia Severo Ochoa” Programme

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3