Breakdown voltage in long tubes: the effect of surface charge

Author:

Meshchanov A VORCID,Shishpanov A IORCID,Bazhin P SORCID,Ionikh Y ZORCID

Abstract

Abstract The study focuses on ignition processes in long discharge tubes (the length of which is large compared to the diameter) in rare gases Ne, Ar, and their mixture at a low pressure (∼1 Torr). Gas breakdown was caused by ramp voltage pulses of positive or negative polarity applied to the active electrode. The breakdown voltage was determined by the voltage drop at breakdown. The emission of the ionization wave (IW) preceding the breakdown was explored. The discharge tubes were exposed to two types of external influences. The first was illumination of the tube cathode with visible spectrum light, while the second was the constant or pulsed bias of the cathode potential by a value lower than that of maintaining discharge. In both cases the breakdown voltage increased up to doubling under some conditions. The observation of the IW revealed the presence of extra waves preceding the regular pre-breakdown IW. The extra wave velocity and emission intensity differed from those of the regular waves. Their main feature is that they do not overcome the entire inter-electrode gap, but weaken and disappear in between. It is assumed that the extra waves deposit the wall surface charge, which in turn affects the breakdown voltage. The increased breakdown voltage value remains for tens of minutes, which could indicate the surface charge lifetime of the same order. This was confirmed by direct wall-potential measurements using an electrostatic voltmeter.

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3