Kinetic simulation of ion thruster plume neutralization in a vacuum chamber

Author:

Nishii KeitaORCID,Levin Deborah A

Abstract

Abstract The electrical environment of a ground vacuum testing chamber creates facility effects for gridded ion thrusters. For example, it is well known that the plume from the thruster generates current paths that are very different from what occurs in space, and the neutralization of this plume is also different. For reasons such as this, it is important to clarify how the experimental testing environment affects plasma flows, but understanding this effect solely through ground experiments is difficult. To that end, this study utilizes particle-in-cell and direct simulation Monte Carlo methods to simulate xenon beam ions and electrons emitted from a neutralizer. First, we compare simulations conducted within the chamber to those conducted in space, demonstrating that grounded chamber walls increase the electric potential and electron temperature. Next, we investigate the impact of the neutralizer’s position and the background pressure on the plume in the vacuum chamber. We find that as the neutralizer position moves closer to the location of maximum potential, more electrons are extracted, resulting in increased neutralization of the plume. We also observe that high background pressure generates slow charge-exchange ions, creating ion sheaths on the side walls that alter ion current paths. Finally, we discuss how the potential at the thruster and neutralizer exits affects the plume. The relative potential of the neutralizer to the vacuum chamber wall is observed to significantly influence the behavior of the electrons, thereby altering the degree of plume neutralization. These findings are shown to be consistent with experimental results in the literature and demonstrate the promise of high-performance simulation.

Funder

National Aeronautics and Space Administration

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3