A 3D kinetic Monte Carlo study of streamer discharges in CO2

Author:

Marskar RORCID

Abstract

Abstract We theoretically study the inception and propagation of positive and negative streamers in C O 2 . Our study is done in 3D, using a newly formulated kinetic Monte Carlo discharge model where the electrons are described as drifting and diffusing particles that adhere to the local field approximation. Our emphasis lies on electron attachment and photoionization. For negative streamers we find that dissociative attachment in the streamer channels leads to appearance of localized segments of increased electric fields, while an analogous feature is not observed for positive-polarity discharges. Positive streamers, unlike negative streamers, require free electrons ahead of them in order to propagate. In C O 2 , just as in air, these electrons are supplied through photoionization. However, ionizing radiation in C O 2 is absorbed quite rapidly and is also weaker than in air, which has important ramifications for the emerging positive streamer morphology (radius, velocity, and fields). We perform a computational analysis which shows that positive streamers can propagate due to photoionization in C O 2 . Conversely, photoionization has no effect on negative streamer fronts, but plays a major role in the coupling between negative streamers and the cathode. Photoionization in C O 2 is therefore important for the propagation of both positive and negative streamers. Our results are relevant in several applications, e.g. C O 2 conversion and high-voltage technology (where C O 2 is used in pure form or admixed with other gases).

Funder

Norges Forskningsråd

Publisher

IOP Publishing

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3