Abstract
Abstract
This paper constitutes the second part of a two-part series investigating the breakdown modes of capacitively coupled plasma across varying pressures, employing an implicit particle-in-cell/Monte Carlo collision model. This segment focuses on non-self-sustained modes, namely normal failure discharge (NFD), bias failure discharge (BFD), and runaway failure discharge (RFD). NFD results from a failed electron avalanche, BFD stems from the charging effect of the blocking capacitor, and RFD arises from a decrease in electron emission rate during sheath formation. The effects of background pressure and voltage on these failure discharges are examined and analyzed. The RFD, which leads to periodic electron avalanches, is discussed in detail. Studying these non-self-sustained cases facilitates understanding the reasons for failure discharge in extremely low-pressure environments and determining the parameter limits of self-sustained discharge, crucial for preventing plasma cracks, enhancing equipment product yield, and ensuring equipment safety, thereby mitigating industrial losses.
Funder
National Natural Science Foundation of China
Hubei University of Science and Technology Doctoral Startup Foundation
Natural Science Foundation of Hubei Province
Central University Basic Research Fund of China