Discharge in air in contact with water: influence of electrical conductivity on the characteristics and the propagation dynamics of the discharge

Author:

Herrmann Antoine,Margot Joëlle,Hamdan AhmadORCID

Abstract

Abstract Due to the high reactivity and the non-thermal properties of streamer discharges, they are applied in various fields, such as water treatment and medicine. Streamer discharges are usually produced in the gas phase before interacting with a liquid or solid surface. Although the dynamics of a streamer discharge in gases is well described, its propagation at liquid surfaces remains poorly understood. In this study, we investigate the influence of water electrical conductivity (σ), between 2 and 1000 µS cm−1, on the characteristics and propagation dynamics of pulsed positive DC nanosecond discharges with the solution serving as a cathode. σ strongly influences τ r (the dielectric relaxation time), and two discharge modes may be obtained, depending on whether τ r is shorter or longer than the delay to achieve breakdown (τ pulse). This latter can be indirectly modified by adjusting the voltage amplitude (V a). In the case of V a = 14 kV, the breakdown voltage (V bd) at low σ is lower than that measured at high σ, probably because τ pulse < τ r and > τ r, respectively. In the case of V a = 20 kV, V bd decreases slightly with σ, probably because of the decrease of the resistivity of the global electrical circuit as τ pulseτ r for high σ. In addition to the electrical characterization, the dynamics of the discharge at the solution’s surface is investigated using 1 ns-time-resolved imaging. Its morphology was found to evolve from a disc to a ring before it splits into highly organized plasma dots (streamers’ head). The number (N dots) and propagation velocity of plasma dots are determined as a function of σ. At V a = 14 kV, N dots does not vary significantly with σ despite the increase of V bd; this latter likely compensates the neutralization of charge accumulated at the surface by ions in solution. In the case of V a = 20 kV, N dots decreases with σ, and it can be related to a decrease of accumulated charge at the water surface. Finally, based on the electrical measurements, we found that the charge per plasma dot (Q dot) increases with σ, which does not correlate with the imaging results that show a short length of propagation at high σ. Then, considering the plasma dot mobility at low σ and the instantaneous propagation velocities at high σ, a more realistic Q dot is measured.

Funder

Canada Foundation for Innovation

Fonds de Recherche du Québec - Nature et Technologies

Natural Sciences and Engineering Research Council of Canada

Publisher

IOP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3