Ozone production by an He+O2 radio-frequency atmospheric pressure plasma jet driven by tailored voltage waveforms

Author:

Harris BenjaminORCID,Dedrick James PORCID,Niemi KariORCID,Wagenaars ErikORCID

Abstract

Abstract Atmospheric pressure plasma jets are efficient sources of reactive oxygen and nitrogen species with potential applications in medicine, materials processing, green industry and agriculture. However, selective control over the production of reactive species presents an ongoing challenge and a barrier to the widespread uptake of these devices in applications. This study therefore investigates the production of ozone by a radio-frequency plasma jet driven with tailored voltage waveforms composed of up to five consecutive harmonics, with a fundamental frequency of 13.56 MHz. The plasma is supplied with helium with small admixtures (0.1%–1.0%) of oxygen gas. The ozone density in the far effluent is measured with Fourier transform infrared spectroscopy and the gas temperature in the plasma channel is determined with optical emission spectroscopy. Voltage waveform tailoring is found to enhance the ozone density in the far effluent of the plasma jet in comparison to operation with single-frequency voltage waveforms. Increasing the number of applied harmonics in the driving voltage waveform for a fixed peak-to-peak voltage enhances the ozone density but significantly increases the gas temperature within the plasma channel. Meanwhile, increasing the number of applied harmonics while maintaining a constant RF power deposition allows the density of ozone in the effluent to be increased by up to a factor of 4 relative to single-frequency operation, up to a maximum density of 5.7 × 10 14  cm−3, without any significant change to the gas temperature. This work highlights that tailored voltage waveforms can be used to control the density of ozone delivered through the plasma effluent, marking an important step towards realising the potential of these plasmas for applications.

Funder

The Norma Ann Christie Scholarship

UK EPSRC

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3