Influence of ion-induced secondary electron emission parameters in PICMC plasma simulations with experimental validation in DC cylindrical diode and magnetron discharges

Author:

Richard TORCID,Furno I,Sublet A,Taborelli M

Abstract

Abstract Niobium thin films are used at CERN (European Organization for Nuclear Research) for coatings of superconducting radio-frequency (SRF) accelerating cavities. Numerical simulations can help to better understand the physical processes involved in such coatings and provide predictions of thin film properties. In this article, particle-in-cell Monte Carlo 3D plasma simulations are validated against experimental data in a coaxial cylindrical system allowing both DC diode and DC magnetron operation. A proper choice of ion induced secondary electron emission parameters enables to match experimental and simulated discharge currents and voltages, with argon as the process gas and niobium as the target element. Langmuir probe measurements are presented to further support simulation results. The choice of argon gas with a niobium target is driven by CERN applications, but the methodology described in this paper is applicable to other discharge gases and target elements.Validation of plasma simulations is the first step towards developing an accurate methodology for predicting thin film coatings characteristics in complex objects such as SRF cavities.

Publisher

IOP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3