Time-resolved optical emission spectroscopy of a unipolar and a bipolar pulsed magnetron sputtering discharge in an argon/oxygen gas mixture with a cobalt target

Author:

Hippler RORCID,Cada MORCID,Stranak VORCID,Hubicka ZORCID

Abstract

Abstract Reactive high power impulse magnetron sputtering (HiPIMS) of a cobalt cathode in pure argon gas and with different oxygen admixtures was investigated by time-resolved optical emission spectroscopy (OES) and time-integrated energy-resolved mass spectrometry. The HiPIMS discharge was operated with a bipolar pulsed power supply capable of providing a large negative voltage with a typical pulse width of 100 μs followed by a long positive pulse with a pulse width of about 350 μs. The HiPIMS plasma in pure argon is dominated by Co+ ions. With the addition of oxygen, O+ ions become the second most prominent positive ion species. OES reveals the presence of Ar I, Co I, O I, and Ar II emission lines. The transition from an Ar+ to a Co+ ion sputtering discharge is inferred from time-resolved OES. The enhanced intensity of excited Ar+* ions is explained by simultaneous excitation and ionisation induced by energetic secondary electrons from the cathode. The intensity of violet Ar I lines is drastically reduced during HiPIMS. Intensity of near-infrared Ar I lines resumes during the positive pulse indicating an additional heating mechanism.

Funder

Czech Science Foundation

Publisher

IOP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3