Design of n-i-p and p-i-n Sb2Se3 solar cells: role of band alignment

Author:

Salem Marwa SORCID,Okil MohamedORCID,Shaker AhmedORCID,Albaker AbdullahORCID,Alturki Mansoor

Abstract

Abstract Investigations into novel device architectures and interfaces that enhance charge transport and collection are necessary to increase the power conversion efficiency (PCE) of antimony selenide (Sb2Se3) solar cells, which have shown great promise as a low-cost and high-efficiency alternative to conventional silicon-based solar cells. The current work uses device simulations to design p-i-n and n-i-p Sb2Se3-based solar cell structures. The n-i-p configuration is investigated by comparing distinct electron transport layer (ETL) materials to get the best performance. While certain ETL materials may yield higher efficiencies, the J–V curve may exhibit S-shaped behavior if there is a misalignment of the bands at the ETL/absorber interface. To address this issue, a proposed double ETL structure is introduced to achieve proper band alignment and conduction band offset for electron transport. A PCE of 20.15% was achieved utilizing (ZnO/ZnSe) as a double ETL and Spiro-OMeTAD as a hole transport layer (HTL). Further, the p-i-n configuration is designed by proposing a double HTL structure to facilitate hole transport and achieve a proper valence band offset. A double HTL consisting of (CuI/CuSCN) is used in conjunction with ETL-free configuration to achieve a PCE of 21.72%. The simulation study is conducted using the SCAPS-1D device simulator and is validated versus a previously fabricated cell based on the configuration FTO/CdS/Sb2Se3/Spiro-OMeTAD/Au.

Funder

University of Ha’il

Ministry of Education

Publisher

IOP Publishing

Subject

Materials Chemistry,General Energy,Materials Science (miscellaneous)

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3