Artificial neural network-based path integral simulations of hydrogen isotope diffusion in palladium

Author:

Kimizuka HajimeORCID,Thomsen BoORCID,Shiga MotoyukiORCID

Abstract

Abstract The contribution of nuclear quantum effects (NQEs) to the kinetics and dynamics of interstitial H isotopes in face-centered cubic Pd was intensively investigated using several path-integral techniques, along with a newly developed machine-learning interatomic potential based on artificial neural networks for Pd–H alloys. The diffusion coefficients (D) of protium, deuterium, and tritium in Pd were predicted over a wide temperature range (50–1500 K) based on quantum transition-state theory (QTST) combined with path-integral molecular-dynamics simulations. The importance of NQEs even at high temperatures was illustrated in terms of the characteristic temperature dependence of the activation free energies for H-isotope migration in Pd. This illuminates the overall picture of anomalous D crossovers among the three H isotopes in Pd. In addition, the D of protium in Pd was directly computed using two approximate quantum-dynamics methods based on Feynman’s path-integral theory, i.e. centroid molecular dynamics (CMD) and ring-polymer molecular dynamics (RPMD), in the temperature range 370–1500 K. The D values obtained from the CMD and RPMD simulations were very similar and agreed better with the reported experimental values than the QTST results in this temperature range. Our machine learning-based path-integral calculations elucidate the underlying quantum nature of the ‘reversed S’-type nonlinear behavior of D for the three H isotopes in Pd on the Arrhenius plots.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Japan Society for the Promotion of Science

Publisher

IOP Publishing

Subject

Materials Chemistry,General Energy,Materials Science (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3