The oxygen reduction reaction in solid oxide fuel cells: from kinetic parameters measurements to electrode design

Author:

Ascolani-Yael JuliánORCID,Montenegro-Hernández AlejandraORCID,Garcés DianaORCID,Liu QuinyuanORCID,Wang Hongqian,Yakal-Kremski Kyle,Barnett ScottORCID,Mogni LilianaORCID

Abstract

Abstract The research and development of new Solid Oxide Fuel Cell cathode materials is an area of intense activity. The kinetic coefficients describing the O2-reduction mechanism are the O-ion diffusion ( D chem ) and the O-surface exchange coefficients ( k chem ). These parameters are strongly dependent on the nature of the material, both on its bulk and surface atomic and electronic structures. This review discusses the method for obtaining the kinetic coefficients through the combination of electrochemical impedance spectroscopy with focused ion-beam 3D tomography measurements on porous electrodes (3DT-EIS). The data, together with oxygen non-stoichiometry thermodynamic data, is analysed using the Adler-Lane-Steele model for macro-homogeneous porous electrodes. The results for different families of oxides are compared: single- and double-layered perovskites with O-vacancies defects, based on La-Sr cobalt ferrites (La0.6Sr0.4Co1-xFexO3-δ , x = 0.2 and 0.8) and La/Pr-Ba cobaltites (La0.5-xPrxBa0.5CoO3-δ , x = 0.0, 0.2 and 0.5), as well as Ruddlesden-Popper nickelates (Nd2NiO4 +δ ) with O-interstitial defects. The analysis of the evolution of molar surface exchange rates with oxygen partial pressure provides information about the mechanisms limiting the O2-surface reaction, which generally is dissociative adsorption or dissociation-limited. At 700 °C in air, the La-Ba cobaltite structures, La0.5-xPrxBa0.5CoO3-δ , feature the most active surfaces ( k chem ≃0.5–1 10−2 cm.s−1), followed by the nickelate Nd2NiO4 +δ and the La-Sr cobalt ferrites, with k chem ≃1–5 10−5 cm.s−1. The diffusion coefficients D chem are higher for cubic perovskites than for the layered ones. For La0.6Sr0.4Co0.8Fe0.2O3-δ and La0.6Sr0.4Co0.2Fe0.8O3-δ , D chem is 2.6 10−6 cm2.s−1 and 5.4 10−7 cm2.s−1, respectively. These values are comparable to D chem = 1.2 10−6 cm2.s−1, observed for La0.5Ba0.5CoO3-δ . The layered structure drastically reduces the O-ion bulk diffusion, e.g. D chem = 1.3 10−8 cm2.s−1 for the Pr0.5Ba0.5CoO3-δ double perovskite and D chem ≃2 10−7cm2.s−1 for Nd2NiO4 +δ . Finally, the analysis of the time evolution of the electrodes shows that the surface cation segregation affects both the O-ion bulk diffusion and the surface exchange rates.

Funder

US National Science Foundation

Agencia Nacional de Promoción de Ciencia y Tecnología

Publisher

IOP Publishing

Subject

Materials Chemistry,General Energy,Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3