Recent developments in 2D materials for energy harvesting applications

Author:

Khandelwal GauravORCID,Deswal Swati,Shakthivel Dhayalan,Dahiya RavinderORCID

Abstract

Abstract The ever-increasing demand for energy as a result of the growing interest in applications, such as the Internet of Things and wearable systems, etc, calls for the development of self-sustained energy harvesting solutions. In this regard, 2D materials have sparked enormous interest recently, due to their outstanding properties, such as ultra-thin geometry, high electromechanical coupling, large surface area to volume ratio, tunable band gap, transparency and flexibility. This has given rise to noteworthy advancements in energy harvesters such as triboelectric nanogenerators (TENGs), piezoelectric nanogenerators (PENGs) and photovoltaics based on 2D materials. This review introduces the properties of different 2D materials including graphene, transition metal dichalcogenides, MXenes, black phosphorus, hexagonal boron nitride, metal-organic frameworks and covalent-organic frameworks. A detailed discussion of recent developments in 2D materials-based PENG, TENG and photovoltaic devices is included. The review also considers the performance enhancement mechanism and importance of 2D materials in energy harvesting. Finally, the challenges and future perspectives are laid out to present future research directions for the further development and extension of 2D materials-based energy harvesters.

Funder

Engineering and Physical Science Research Council

Publisher

IOP Publishing

Subject

Materials Chemistry,General Energy,Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3