Fuel starvation in automotive PEMFC stacks: hydrogen stoichiometry and electric cell-to-cell interaction

Author:

Nissen JensORCID,Boye Jan-Peter,Schwämmlein Jan NicolasORCID,Hölzle MarkusORCID

Abstract

Abstract Fuel gross starvation (FGS) in a polymer electrolyte membrane fuel cell is an error state, during which the supplied amount of fuel is insufficient to sustain the requested electrical current. A novel experimental technique was developed to intentionally provoke well-controlled fuel starvation situations of one single cell in a multi-cell fuel cell stack. This modification was implemented in a 20 cell stack of automotive-sized cell geometry and carbon composite bipolar plates (BP). The intentional fuel starvation situation was analyzed using a printed circuit board to measure the current density distribution (CDD) in addition to a multipoint cell voltage monitoring (CVM) to measure local cell voltages. The provoked detrimental subsidiary reactions of the anode were found to take place spatially separated from the normal hydrogen oxidation reaction. It was therefore possible to determine and intentionally vary the hydrogen stoichiometry of the fuel starved cell. This error state caused intense distortions of the starved cells CDD and local cell voltages. The maximum difference obtained between outlet and inlet voltage of the modified cell was 1.4 V. Compared to the average current density, a more than 4-times higher maximum local current density was measured in the affected cell. Adjacent cells were also affected via electric cell-to-cell interaction. Characteristic patterns therefore became visible in the cell voltage distribution, measured by the inlet and outlet CVM. The use of carbon composite BP is favoring the occurrence of these patterns due to their relatively high electric sheet resistance. Using the new hardware setup, we could investigate the relation between the hydrogen stoichiometry of the affected cell during FGS and the observed irregular redistribution of current density and local cell voltages.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3