Design and analysis of a contact-aided flexure hinge (CAFH) with variable stiffness

Author:

Dai ShenyuanORCID,Hao GuangboORCID,Qiu LifangORCID

Abstract

Abstract This paper presents a novel contact-aided flexure hinge (CAFH) with variable stiffness, which consists of a contact-aided segment, a flexible segment and a rigid part. The proposed CAFH can facilitate a compact design and provide an alternative for stiffness-variable designs under any loading conditions. With a mortise-tenon structure, the CAFH is trivially affected by friction. The design and deformation procedures of the CAFH are described in detail, followed by its theoretical kinetostatic modeling using the chained beam-constraint model. The deformation of all segments is considered in the kinetostatic model, which expands the space of design parameters for stiffness-variable designs. Then, the accuracy of the theoretical model and the variable stiffness design are verified by nonlinear finite element analysis (FEA) and experimental tests. In term of stiffness, the maximum relative errors of the theoretical model are 0.76% in Stage 1 and 0.70% in Stage 2, as compared with FEA, respectively. Further, the parameter sweep is carried out, followed by sensitivity analysis to identify the main test error sources. Finally, the multi-material scenarios are investigated preliminarily, and some outlooks are discussed.

Funder

Specialized Research Fund for the Technology Innovation of Foshan City

National Natural Science Foundation of China

Publisher

IOP Publishing

Reference26 articles.

1. Contact aided compliant mechanisms: concept and preliminaries;Mankame,2002

2. Design and optimization of a contact-aided compliant mechanism for passive bending;Tummala;J. Mech. Robot.,2014

3. A steerable neuroendoscopic instrument using compliant contact- aided joints and monolithic articulation;Eastwood;J. Med. Devices Trans. ASME,2020

4. Design of a bio-inspired contact-aided compliant wrist;Bilancia;Robot. Comput. Integr. Manuf.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Synthesis and Optimization of Contact-Aided Compliant Mechanisms with Prescribed Nonlinear Curve;2024 6th International Conference on Reconfigurable Mechanisms and Robots (ReMAR);2024-06-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3