Tensile and fatigue testing of impacted smart CFRP composites with embedded PZT transducers for nonlinear ultrasonic monitoring of damage evolution

Author:

Andreades Christos,Meo MicheleORCID,Ciampa FrancescoORCID

Abstract

Abstract Ultrasonic systems based on ‘smart’ composite structures with embedded sensor networks can reduce both inspection time and costs of aircraft components during maintenance or in-service. This paper assessed the tensile strength and fatigue endurance of carbon fibre reinforced plastic (CFRP) laminates with embedded piezoelectric (PZT) transducers, which were covered with glass fibre patches for electrical insulation. This sensor layout was proposed and tested by the authors in recent studies, proving its suitability for nonlinear ultrasonic detection of material damage without compromising the compressive, flexural or interlaminar shear strength of the ‘smart’ CFRP composite. In this work, CFRP samples including PZTs (G-specimens) were tested against plain samples (P-specimens), and their mean values of tensile strength and fatigue cycles to failure were found to be statistically the same (910 MPa and 713 000 cycles) using the one-way analysis of variance method. The same tests on P- and G-specimens with barely visible impact damage (BVID) showed that the corresponding group means were also the same (865 MPa and 675 000 cycles). Nonlinear ultrasonic experiments on impacted G-samples demonstrated that embedded PZTs could monitor the growth of BVID during fatigue testing, for a minimum of 480 000 cycles. This was achieved by calculating an increase of nearly two orders of magnitude in the ratio of second-to-fundamental harmonic amplitude. Finally, PZT transducers were confirmed functional under cyclic loading up to ∼70% of sample’s life, since their capacitance remained constant during ultrasonic testing.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3