A novel chiral metamaterial with multistability and programmable stiffness

Author:

Wang Jia-Xin,Yang Qing-ShengORCID,Wei Yu-Ling,Tao RanORCID

Abstract

Abstract Chiral metamaterials are widely studied for their unique mechanical properties, but still have problems such as low stiffness and few available scenarios. Based on the tetra-chiral metamaterial, a type of metamaterial with programmable stiffness and multistability is designed in this paper. The stiffness of two-dimensional (2D) metamaterial can be adjusted programmatically by changing its geometric parameters. The equivalent elastic modulus and Poisson’s ratio were obtained by using an analytical solution and finite element method. Then the 2D metamaterials were extended to cylindrical tubes with multistability. The deformation patterns of the 2D metamaterials and cylindrical tubes with different geometric parameters were investigated. It is found that the cylindrical tubes can exhibit compression–torsion coupling and multistability deformation characteristics. This work can provide a valuable reference for designs of novel metamaterials with coupled deformation, as well as further expanding the field of application.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New topology design of 3D chiral metamaterials with compression-twist coupling effect;Mechanics of Advanced Materials and Structures;2024-08-22

2. Novel 4D-printed multi-stable metamaterials: programmability of force-displacement behaviour and deformation sequence;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-07-29

3. Topology optimization of chiral metamaterials with application to underwater sound insulation;Applied Mathematics and Mechanics;2024-07

4. A novel 3D Z-shape design of compression-twist coupling metamaterial;Smart Materials and Structures;2024-06-21

5. New type of overrunning clutch based on curved-plate compression-torsion metamaterial;Acta Mechanica Sinica;2024-06-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3