Particle-reinforced elastomer model to analyse viscoelastic properties of flake-shaped electrolyte iron particle-based magnetorheological elastomer

Author:

Patel DipalORCID,Upadhyay Ramesh VORCID,Mazlan Saiful Amri

Abstract

Abstract This paper uses parallel-plate-plate rheometry to focus on the magnetic field-dependent nonlinear viscoelastic behaviour of flake-shaped electrolyte iron powder-based magnetorheological elastomer (MRE). MRE was prepared using liquid silicon rubber as a base, a curing agent and electrolyte iron particles as fillers. Three MRE samples having 60%, 40%, and 0% filler weight fractions were prepared. The curing was carried out at 300 K. The thickness of the sample was 1.00 ± 0.04 mm. Scanning electron microscopy results showed uniform dispersal of particles within a matrix. The swelling measurement technique was used to confirm the enhanced reinforced properties of elastomer by calculating the cross-link density. The magnetic volume fraction evaluated from magnetisation measurements yields values of 18.7% for MRE-60 and 8.7% for MRE-40. Both moduli’s field-induced linear and nonlinear amplitude dependence were analysed using the modified particle-reinforced elastomer model. The result indicates that filler particles adsorbed on polymer chains were essential in determining the reinforcing properties of MRE. The improved cross-link density and particle morphology were responsible for the enhanced field-induced magnetorheological effect (277%). This value is nearly three times greater than that observed in spherical particles-based MRE.

Funder

Malaysia Japan International Institute of Technology, Universiti Teknologi Malaysia

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3