Abstract
Abstract
This paper uses parallel-plate-plate rheometry to focus on the magnetic field-dependent nonlinear viscoelastic behaviour of flake-shaped electrolyte iron powder-based magnetorheological elastomer (MRE). MRE was prepared using liquid silicon rubber as a base, a curing agent and electrolyte iron particles as fillers. Three MRE samples having 60%, 40%, and 0% filler weight fractions were prepared. The curing was carried out at 300 K. The thickness of the sample was 1.00 ± 0.04 mm. Scanning electron microscopy results showed uniform dispersal of particles within a matrix. The swelling measurement technique was used to confirm the enhanced reinforced properties of elastomer by calculating the cross-link density. The magnetic volume fraction evaluated from magnetisation measurements yields values of 18.7% for MRE-60 and 8.7% for MRE-40. Both moduli’s field-induced linear and nonlinear amplitude dependence were analysed using the modified particle-reinforced elastomer model. The result indicates that filler particles adsorbed on polymer chains were essential in determining the reinforcing properties of MRE. The improved cross-link density and particle morphology were responsible for the enhanced field-induced magnetorheological effect (277%). This value is nearly three times greater than that observed in spherical particles-based MRE.
Funder
Malaysia Japan International Institute of Technology, Universiti Teknologi Malaysia
Subject
Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献