Abstract
Abstract
To meet the demand of designing piezoelectric actuators with long working stroke and high resolution, a new parasitic motion principle (PMP) linear actuator based on the symmetrical Z-shaped compliant mechanism was proposed in this paper. The mechanism design and the operation principle of the proposed linear actuator were elaborated. The theoretical model of the symmetrical Z shaped compliant mechanism deformation was established, and was verified by the simulation analysis. Experimental studies were conducted on a manufactured prototype to investigate the performances of the proposed linear actuator. The results indicate that a linear actuator with bi-directional motion can be achieved, which has a resolution of 106 nm in the forward direction and 84 nm in the reverse direction. Under the locking force of 0.8 N, the maximum speed of 270 µm s−1 was reached, when the amplitude and the frequency of the driving voltage were set to 60 V and 650 Hz. It is also noted that the proposed linear actuator can work with a loading capacity of 25 g. This study has provided an alternative way for the development of a PMP linear actuator with bi-directional motion.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献