Design and development of a high-performance tensile-mode piezoelectric energy harvester based on a three-hinged force-amplification mechanism

Author:

Chang Hao-Lin,Su Wei-JiunORCID

Abstract

Abstract When considering durability and reliability, flexible piezoelectric materials, such as PVDF and macro-fiber composite, are preferable to piezoceramics due to the brittleness of piezoceramics. However, flexible piezoelectric materials cannot sustain compressive loads so they need to be operated in either tensile or bending mode. The tensile mode has the advantage of uniform strain distribution over the bending mode. This study proposes a novel tensile-mode piezoelectric energy harvester based on a three-hinged force amplification mechanism. The proposed design consists of a rigid beam and an elastic PVDF film connected to each other via a revolute joint. The assembly is attached to a base via revolute joints with the PVDF film pre-stretched. The PVDF film bears a dynamic tensile load when the harvester is under harmonic excitations. A theoretical model of the proposed harvester is developed and experimentally validated. The simulation and experimental results show that the proposed design exhibits a strong hardening effect due to the nonlinear geometry of the three-hinged mechanism. The effect of preloads and mass distributions are explored to see their impact on the harvesting performance. It is shown that the peak voltage and bandwidth of the harvester decline as the preload increases. By properly tuning the mass distribution, the performance of the harvester can be enhanced. Compared with a bending-mode cantilevered harvester, the voltage output and harvesting bandwidth of the proposed harvester can be improved by 500% and 1250%, respectively.

Funder

Ministry of Science and Technology

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Reference48 articles.

1. A vibration energy harvesting device with bidirectional resonance frequency tunability;Challa;Smart Mater. Struct.,2008

2. Resonator with magnetically adjustable natural frequency for vibration energy harvesting;Mansour;Sens. Actuators A,2010

3. Enhanced broadband piezoelectric energy harvesting using rotatable magnets;Zhou;Appl. Phys. Lett.,2013

4. A frequency tunable piezoelectric energy converter based on a cantilever beam;Eichhorn,2008

5. A piezoelectric power harvester with adjustable frequency through axial preloads;Hu;Smart Mater. Struct.,2007

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3