A thermal load identification method based on physics-guided neural network for honeycomb sandwich structures

Author:

Du WenqiORCID,Yang Lekai,Lu LinglingORCID,Le Jie,Yu Mingkai,Song Hongwei,Xing XiaodongORCID,Huang Chenguang

Abstract

Abstract The identification of thermal load/thermal shock of aircraft during service is beneficial for collecting information of the service environment and avoiding risks. In the paper, a method based on multivariate information fusion and physics-guided neural network is developed for the inverse problem of thermal load identification of honeycomb sandwich structures. Two thermal feature parameters: temperature gradient and temperature variation rate are used to build the dataset. A 16-layers physics-guided neural network is presented to achieve the predicted results consistent with physical knowledge. In the work, laser irradiation is used as the thermal load, and two laser parameters are to be identified, i.e. spot diameter, power. Simulations and experiments are conducted to verify the effectiveness of the proposed method. The effects of physics-guided loss function and multivariate information fusion are discussed, and it is found that the results based on the proposed method are much better than the results based on the method without physical model. Besides, results based on multivariate information fusion are better than results based on single temperature response. Then, the effects of network models and hyper parameters on the proposed method are also discussed.

Funder

Strategic Priority Research Program of the Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3