Physics-informed deep operator network for predicting martensite evolution in superelastic shape memory alloys through cyclic tensile tests

Author:

Lenzen NiklasORCID,Altay OkyayORCID

Abstract

Abstract Superelastic shape memory alloy (SMA) wires and rods possess unique deformation and energy dissipation capabilities. For the assessment of their stress response, commonly cyclic tensile tests are conducted. An important but subtle parameter in this procedure is the martensite evolution. In scenarios where conducting thermal experiments is impractical, inverse modeling from cyclic tests serves as a viable alternative. However, employing constitutive models in this process presents distinct challenges, such as parameter identification and calibration, or numerical stability issues. To address these challenges, this paper proposes a data-driven method based on a physics-informed deep operator network (DeepONet) to estimate the martensite evolution. Constraint with a stress equation, the network requires only strain–stress data for training and provides stress responses in addition to the martensite evolution. From the training data, the network learns to consider the effects included in the response. The DeepONet can be coupled with experiments to provide online estimates from noisy sensor-based strain inputs, while remaining numerically stable. Moreover, this approach avoids the need for separate parameter identification or calibration. This paper details this method and evaluates its performance through experiments conducted on superelastic SMA wires. Furthermore, as an alternative approach, training using a constitutive model is provided.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3