Development of a new magnetorheological impact damper with low velocity sensitivity

Author:

Deng LeiORCID,Sun ShuaishuaiORCID,Jin Shida,Li ZhixiongORCID,Du Haiping,Zhang ShiwuORCID,Li WeihuaORCID

Abstract

Abstract The velocity sensitive characteristic of the conventional linear magnetorheological (MR) damper is undesirable in the application of impact protection. It will induce large damping forces when the damper suffers high velocity impacts, whilst comprising the energy dissipation efficiency of the damper and posing a serious threat to occupants and mechanical structures. This work reports a new MR impact damper (NMRID) with low velocity sensitivity. Unlike the conventional MR impact damper (CMRID) in which MR fluids (MRFs) flow from one chamber to the other through a small annular gap between the piston and cylinder, the NMRID has a whole annular gap between the shaft and cylinder that is filled with MRFs, and the MRFs work in a pure shear mode without any liquid flow. In this work, a NMRID and a CMRID were prototyped. The velocity sensitivities of these two impact dampers were compared via numerical analysis and experimental impact tests. The analysis and test results indicate that NMRID possesses a much lower velocity sensitivity than the CMRID; the dynamic range of the NMRID decreases less than CMRID with the increase of nominal impact velocity. Then, to demonstrate the controllability of NMRID, impact tests with a bang–bang control were implemented, and the peak force of NMRID was successfully controlled around a target force under different levels of nominal impact velocity. This research proves that the designed NMRID is less sensitive to velocity than the CMRID and the NMRID has good controllability, demonstrating that the NMRID can serve as a better candidate than CMRID in applications with high impact velocity.

Funder

University of Wollongong

Australian Research Council

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3