An efficient robotic-assisted bolt-ball joint looseness monitoring approach using CBAM-enhanced lightweight ResNet

Author:

Li Li,Yuan RuiORCID,Lv YongORCID,Xu Shijie,Hu Huangxing,Song GangbingORCID

Abstract

Abstract Bolt-ball joints are widely used in space structures, and their looseness may lead to major safety accidents. The current bolt monitoring methods based on deep learning usually have high computational complexity, and it is difficult to guarantee its computational efficiency under practical scenario. To mitigate this problem, here in this paper, an efficient robotic-assisted bolt-ball joint looseness monitoring approach using convolutional block attention module (CBAM)-enhanced lightweight ResNet is proposed. Firstly, the robotic-assisted tapping method is applied to bolt-ball joints to generate audio signals, which are constructed into time-frequency maps by continuous wavelet transform. Secondly, the original ResNet is improved as a lightweight network, which successfully reduces model complexity, and employs time-frequency maps as input. Then, CBAM is introduced to capture global information and focus on the critical feature. Thus, the efficiency of feature extraction is significantly improved. Finally, by the overall optimized structure, a CBAM-enhanced lightweight ResNet model is established to monitor the bolt-ball joints looseness state accurately. Experimental results demonstrate the high efficiency while maintaining very lightweight structure of the proposed method, verifying the effectiveness and superiority of the robot-assisted approach using CBAM-enhanced lightweight ResNet over other methods.

Funder

Hubei Natural Science Foundation Youth Program

Hubei Natural Science Foundation Innovation Group Program

Wuhan Key Research and Development Plan Artificial Intelligence Innovation Special Program

Hubei Natural Science Foundation Innovation Development Joint Key Program

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3