A novel bridge-type compliant displacement amplification mechanism under compound loads based on the topology optimisation of flexure hinge and its application in micro-force sensing

Author:

Chen WeilinORCID,Kang Shidi,Lu QinghuaORCID,Zhang Qinghua,Wei Huiling,Zhang Yunzhi,Lin Zeqin,Luo Lufeng

Abstract

Abstract The design and modelling of bridge-type compliant displacement amplification mechanisms (CDAMs) are key components in precision engineering. In this study, a bridge-type CDAM under compound loads with an optimum flexure hinge configuration is designed, analysed, and tested. For the case when the flexure hinge configuration is unknown, the internal force distribution for a bridge-type CDAM under compound loads is analysed, and the topology of the flexure hinge is optimised. By applying different volume constraints, the optimised flexure hinge configurations are all V-shaped. Subsequently, a static model of the V-shaped flexure hinge is established. For a bridge-type CDAM with V-shaped flexure hinges, the compliance matrix of the flexure hinge is combined with the relationship among the local compliance matrices in a serial mechanism; consequently, the analytical relationship between the output displacement, output force, and input force is derived. The CDAM is parametrically optimised to further improve the output performance. Simulations and experiments verify the topology optimisation result, static model, and parametric optimisation result. Finally, the CDAM and its static model are applied to the tensile manipulation and micro-force sensing in a microfiber tensile test.

Funder

Foshan City Key Field Science and Technology Research Project

Research Projects of Universities in Guangdong Province

Natural Science Foundation of Guangdong Province

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3