A tunable multi-arm electromagnetic pendulum for ultra-low frequency vibration energy harvesting

Author:

Nicolini LorenzoORCID,Castagnetti DavideORCID,Sorrentino AndreaORCID

Abstract

Abstract Autonomous electronic devices and sensors are essential to reduce expensive maintenance, increasing job security and reliability, avoiding battery replacements and wired systems. Industrial systems and civil structures vibrate dissipating an important amount of energy that can be harvested to power small devices. This work continues and extends a previous work from the authors (Castagnetti 2019 Meccanica 54 749–60). Here we improved that initial configuration by proposing a tunable multi-arm electromagnetic pendulum for ultra-low frequency vibrations energy harvesting. This configuration features five electromagnetic converters and a magnetic spring, each supported by a pendulum arm with different length: when excited by external vibrations, this six arms frame is free to oscillate around a central pivot. The paper starts from conceptual design, includes a detailed multiphysics dynamic simulation implemented with Matlab Simscape software, presents the prototype development through three-dimensional printing and experimental validation. Systematic experimental tests investigated different pendulum configurations for three stiffness levels of the magnetic spring and confirmed both the ultra-low frequency response (from 2 to 10 Hz), as predicted by the dynamic simulation, and the good voltage and power outputs. Specifically, for the higher stiffness of the magnetic spring, corresponding to an oscillation frequency of about 9.5 Hz, the power output was up to 8.4 mW and the output voltage of about 2 Volt.

Funder

Università Degli Studi di Modena e Reggio Emila

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3