Tunable stiffness Kirigami gripper based on shape memory polymer and supercoiled polymer artificial muscle for multi-mode grasping

Author:

Yang YangORCID,Wang Peng,Liu Jia,Fu Yili,Shen Yang

Abstract

Abstract In this article, a tunable stiffness soft gripper based on Kirigami structure and shape memory polymer (SMP) is proposed. The Kirigami gripper uses SMP as variable stiffness element and employs Nichrome heating wires laid inside the gripper as heating element. Due to the segmented layout of the heating wires, the gripper possesses segmented stiffness modulation capability. As a result, programmable deformation trajectories are achieved, enabling multi-mode grasping functionality by adjusting its bending shape to accommodate different object contours. Using the thermally activated supercoiled polymer artificial muscle as the actuator, the gripper can achieve a silent and pumpless actuation and whole robotic system can be compact. The gripper mainly offers three different grasping modes—pinching, wrapping and hooking, to meet the requirements of complex tasks. Experimental results show that the Kirigami gripper can achieve a 13 times stiffness variation within 16 s, and each Kirigami gripper with different heating patterns exhibits different trajectories during the deformation process, capable of adapting and locking its shape to objects with different contours during grasping.

Funder

State Key Laboratory of Robotics and Systems

State Key Laboratory of Mechanical System and Vibration

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3