Influence of temperature on magnetorheological fluid properties and damping performance

Author:

Kumar Kariganaur Ashok,Kumar HemanthaORCID,Arun MORCID

Abstract

Abstract The magnetorheological (MR) system’s performance depends on the MR fluid’s temperature in operation. This study aims to evaluate the temperature effect of MR fluid on performance while the damper is working. Before synthesizing MR fluid, scanning electron microscopy, x-ray diffraction, and particle size analysis verifies for the synthesis of MR fluid in-house. Characterization of the MR fluid at different temperatures and magnetic fields was carried out. The Herschel–Bulkley model is used to analyse the nonlinearity in the fluid by incorporating the temperature effect. The range of critical parameters used to fabricate the MR damper is selected using the Technique for Order of Preference by Similarity to Ideal Solution performance score. The temperature of the MR fluid is measured using an embedded thermocouple while the damper is operating at different loading parameters. The results reveal that the fluid temperature rises significantly from atmospheric to 125.39 °C with decrease in damping force by 66.32% at higher loading parameters. The theoretical model predicts the increase in temperature similar to that of the experimental values with an average error of 10.24% in the on-state condition. Particle characterization after dynamic testing reveals particle morphology has not changed but the saturation magnetization of the particles reduced by 57% at higher temperatures (127 °C). It is observed through thermogravimetric analysis that, the life of the fluid is reduced by 0.25%, which is negligible after dynamic testing of the fluid for approximately 85000 cycles. Finally, to imitate the temperature effect on the particle, particles were heat-treated at 200 °C, 400 °C, and 600 °C, and through scanning electron microscope image it is confirmed that deterioration of the particle starts after 200°C, if the fluid is operated for a prolonged amount of time.

Funder

Impacting Research Innovation and Technology

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3