Coupled dynamic and piezoelectric response of RPEHs embedded in road under traffic load via multiscale finite element models

Author:

Wang Peng,Pan Jiayao,Wang Jun,Shi LiORCID,Wu Jianfeng

Abstract

Abstract Road Piezoelectric Energy Harvesting Systems (RPEHs) effectively collect and convert mechanical energy from road surface into electrical energy for intelligent traffic guidance and monitoring. To accurately evaluate the energy harvesting efficiency of RPEHs under traffic loads and road conditions, a multiscale finite element model of traffic load-road-RPEHs is developed. The model encompasses a encapsulated stacked piezoelectric transducer embedded in an large-scale road model. This approach addresses the limitations of previous studies that neglected the effect of RPEHs structure on the dynamic and piezoelectric response. The large-scale model provides the dynamic response of RPEHs for an independent small-scale model of the stacked piezoelectric transducer to enable coupled dynamic and piezoelectric behavior. Furthermore, a piezoelectric output theory considering the loss impedance is formulated. Combining this theory with the open-circuit voltage obtained from the multiscale models, we determine the output voltage and power of RPEHs under various conditions, such as vehicle speeds, axle weights, burial depths. The results demonstrate that the loss impedance undergoes significant changes under different conditions, exerting a substantial impact on the output of RPEHs, which should be considered during analysis. RPEHs positioned closer to the road surface produce higher output but also exhibit increased stress concentration. The pavement modulus is inversely proportional to the piezoelectric output, while the subgrade modulus has a comparatively smaller impact due to the stiffness of RPEHs.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Reference36 articles.

1. Capacitive load effects on a magneto strictive fully coupled energy harvesting device;Davino;Harvesting Device,2009

2. Briefing: recent developments in pavement energy harvest systems;Ferreira;Proc. Inst. Civ. Eng.,2012

3. Consideration of permeable pavement in landscape architecture;Çetin;J. Environ. Prot. Ecol.,2015

4. Power generation from piezoelectric lead zirconate titanate fiber composites;Mohammadi;MRS Online Proc. Libr.,2002

5. A review of power harvesting using piezoelectric materials (2003–2006);Anton;Smart Mater. Struct.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3