Stiffness and damping tuning through using a piezoelectric friction damper and a layered structure

Author:

Rezvani SinaORCID,Park Simon SORCID

Abstract

Abstract Vibration suppression is essential for enhancing the performance of mechanical systems, as it prevents structural damage and minimizes noise. Various methods, including passive, semi-active, and active approaches, have been developed to achieve this goal. Among these, friction dampers, primarily categorized as passive, are highly efficient in adjusting system damping and influencing energy dissipation. By modulating the normal force in the friction damper based on external force intensity, performance can be further enhanced. This study employs a piezoelectric actuator to regulate the normal force and introduces an analytical method along with finite element modeling to estimate the normal force in the friction damper. A layered structure is introduced as an additional mean to tune damping and stiffness. The performance of the semi-active piezoelectric friction damper is investigated in free and forced vibrations, including flexural and axial cyclic loads. Furthermore, the advantages of employing layered structures are investigated experimentally. Overall, the piezoelectric friction damper demonstrates effective energy dissipation during macroslip events. Nevertheless, in case of microslip, increasing the actuator voltage results in reduced damping and a marginal rise in stiffness.

Funder

Alberta Innovates

Natural Sciences and Engineering Research Council of Canada

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3