Development of enhanced force models to analyze the nonlinear hysteresis response of miniaturized pneumatic artificial muscles

Author:

Zabihollah Shakila,Moezi Seyed AlirezaORCID,Sedaghati RaminORCID

Abstract

Abstract Miniaturized pneumatic artificial muscles (MPAMs), designed to replicate natural muscle actuation, offer unique attributes such as a high power-to-weight ratio, flexibility, easy integration, and compactness, making them favourable for many applications. The present paper aims at the development of an accurate semi-analytical force model considering the effect of the bladder material and friction terms to predict the nonlinear force-deformation response of MPAMs during contraction and expansion cycles. Existing force models for MPAMs exhibit limitations to accurately capturing the force-deformation behaviours due to several simplification factors. This study enhances these models by integrating correction terms to accurately address the nonlinearity and frictional effects exhibited by MPAMs. An analysis of the hysteresis loops resulting from the cyclic loading and unloading of MPAMs under specific pressures is undertaken to compare different methodologies in order to determine the most accurate correction terms. To investigate the nonlinear behaviour of MPAMs, the stress-strain relationship of the bladder material and results from force-deformation experimental tests on the entire actuator are considered and for the effect of friction term, theoretical and empirical approaches are investigated. Results suggest that the theoretical force model based on analytical and empirical friction forces, respectively, slightly overestimates and underestimates the force experienced by MPAMs during contraction while slightly underestimate and overestimates during expansion, respectively. A comparative analysis between MPAMs featuring Ecoflex-50 silicone and Ecoflex30 + PDMS mixture as bladder materials has also been conducted to further investigate the effect of bladder materials on their force and contraction outputs under inlet pressures ranging from 0 kPa to 300 kPa. It is shown that the MPAM feauting Ecoflex-50 bladder, exhibits lower dead-band pressure and an overall reduced blocked force in comparison to MPAM with bladder made of Ecoflex30 + PDMS while exhibiting a substantially enhanced free contraction capacity.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

IOP Publishing

Reference24 articles.

1. Evaluation of millimeter-size fluidic flexible matrix composite tubes;Vashisth,2023

2. Development of grip amplified glove using bi-articular mechanism with pneumatic artificial rubber muscle;Tadano,2010

3. Fluid actuated motor system and stroking device;Gaylord,1958

4. Non-linear quasi-static model of pneumatic artificial muscle actuators;Wang;J. Intell. Mater. Syst. Struct.,2015

5. Effect of bladder wall thickness on miniature pneumatic artificial muscle performance;Pillsbury;Bioinsp. Biomim.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3