Piezoelectric unimorph and bimorph cantilever configurations: Design guidelines and strain assessment

Author:

Giri Abhijeet MORCID,Ali S FORCID,Arockiarajan AORCID

Abstract

Abstract Multi-stable configurations of piezoelectric harvester are quite successful in achieving the two important goals, the broadband frequency response and large orbit oscillations exhibiting periodic, multi-periodic, and chaotic solutions. However, in the quest of achieving large amplitude broadband frequency response, assessment of induced strain levels considering the limits on the strain in piezoelectric material has received minimal attention. In this context, the investigation presents analytical formulation for the assessment of induced strain and voltage(s) in piezoelectric unimorph and bimorph cantilevers. The formulation quantifies not only the induced voltages in individual piezoelectric layers of a bimorph, but also the equivalent voltages in parallel and series connection modes, respectively. Also, while computing the induced voltage in the first piezoelectric layer, the contribution from the induced voltage of second piezoelectric layer to the acting bending moment is captured in the formulation. The formulations are validated through the experiments and results from the literature. Further, we have applied two practically useful normalization schemes, the t p - and t t -normalizations to the analytical expressions. Using the two normalization schemes, influences of variation of substrate and adhesive layer thicknesses, elastic moduli of layers, and substrate-to-composite length fraction are visualized and discussed. Based on the results, summarized guidelines for design and selection of geometric and material parameters are presented, which may also be applicable for other sensing and actuation applications. At last, practically suitable ranges and optimum values for the normalized design variables are proposed.

Funder

Indian Institute of Technology Madras

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Reference29 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3