A comprehensive test method for measuring actuation performance of McKibben artificial muscles

Author:

Salahuddin Bidita,Warren HollyORCID,Spinks Geoffrey MORCID

Abstract

Abstract The versatile nature of artificial muscles and their applications is derived from their ability to actuate in tensile, torsional and bending modes that can mimic the action of hydraulic rams, electric motors and biomimetic curling arms, respectively. Artificial muscles have exhibited great potential for fabricating robotic components and surgical tools due to their resemblance to biological muscles; along with their high actuation force per mass. For further investigation of these artificial muscles as tensile actuators with practical applications, it is imperative to standardise methods for characterising their performance. This article applies an integrated characterization method: simultaneously measuring the free stroke of a McKibben-type hydraulic artificial muscle; the stroke while operating against an externally applied force (isotonic); the blocked force of these muscles while keeping the muscle at constant length (isometric); and the force and displacement change when the muscle operates against a return spring (variable force, pressure). This linear mechanics approach has been verified and allows the prediction of these fundamental actuation characteristics while illustrating the effects of changing external load on the muscle performance. This study proposes an important approach to assist the design of McKibben muscles when used to carry variable loads such as in exoskeletons, prosthetics, and robotics applications.

Funder

Centre of Excellence for Electromaterials Science, Australian Research Council

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3