Design, modelling and experiments on a multisource energy harvester based on a single ferroelectric ceramic

Author:

Huang JiahanORCID,Jiang Chengbin,An Mingyi,Hu Pengfei,Xie YiYuan,Li Lingfeng,Chen Yu

Abstract

Abstract Energy harvesting is a promising technique that can provide renewable and clean energy for the wireless sensor nodes. However, the solar, mechanical and thermal energies in our living environment are not always available due to the day/night, the weather and working conditions. Therefore, energy harvesting for a single energy source cannot provide a stable and continuous energy supply. Here, a multisource energy harvester based on a single material/structure (PLZT-Sb) is presented for scavenging solar, thermal, and mechanical energies simultaneously or individually. And then the output energy mathematical model is established and proved experimentally. The enhanced energy generations with the peak voltage of 1.9 kV and peak current of 200 nA are achieved by the unique integration of multi-effects, which can drive 139 LEDs. This work demonstrates an innovative approach for developing multisource energy harvester in a single ferroelectric material on the basis of the coupled multi-physics fields.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3