Hybrid fiber laser integrating fast and slow active media for accurate synthesis of high-energy arbitrary optical waveforms by cavity dumping

Author:

Nyushkov BorisORCID,Ivanenko AlekseyORCID,Smirnov SergeyORCID

Abstract

Abstract We demonstrate the possibility of the accurate direct laser synthesis of high-energy arbitrary optical waveforms by the programmable driving of partial cavity dumping in a specific continuous-wave fiber laser. To this effect we have developed an original hybrid laser configuration which integrates two different active media. The first medium, a semiconductor optical amplifier (SOA), acts as a saturated lumped preamplifier. It features a relatively fast (sub-nanosecond) gain recovery, and thus effectively suppresses the intracavity power fluctuations induced by cavity dumping. The second active medium, an erbium-doped fiber amplifier (EDFA), acts mainly as a booster amplifier. This distributed inertial amplifying medium effectively accumulates pump energy, thereby providing an enhancement of output energy upon cavity dumping. Our simple proof-of-concept laser setup has allowed the synthesis of nanosecond arbitrary optical waveforms with an energy up to 40 nJ and arbitrarily tunable repetition rate. The proposed combination of a slow (EDFA) and fast (SOA) amplifying stages prevents the laser from strong relaxation oscillations and power flux fluctuations which essentially restrict cavity dumping in conventional rare-earth-doped fiber lasers. The applied two-stage intracavity spectral filtering ensures spectral purity of a rather narrowband (⩽0.1 nm) laser output. For the purpose considered, the integrated SOA-EDFA laser configuration is preferable to a conventional architecture ‘master oscillator—power amplifier’ whose nonlinear gain can obstruct the accurate synthesis of high-energy optical waveforms.

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous),Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3