Sap flow as a function of variables within nested scales: ordinary least squares vs. spatial regression models

Author:

Zabihi KhodabakhshORCID,Singh Vivek VikramORCID,Trubin Aleksei,Tomášková Ivana,Blaženec Miroslav,Surový Peter,Jakuš Rastislav

Abstract

Abstract Understanding scale-dependent influential drivers of sap flow variability can help managers and policymakers to allocate resources within a particular scale to improve forest health and resiliency against water-stress stimuli such as drought and insects, e.g. bark beetle infestations. We defined a daily measure of sap flow as a function of variables within nested scales of landscape, stand, and tree, using ordinary least squares (OLS), spatial lag and error regression models. Model covariates were elevation, latitude (Y-coordinate), longitude (X-coordinate), neighborhood tree density, tree diameter at breast height, and bark temperature for 40-surveyed Norway spruce (Picea abies) in the Czech Republic, Central Europe. Trees were spatially distributed within 19-established subplots across five plots, with distances ranging 2–9 km, at which variations in soil water potential and temperature were limited. The daily measure of sap flow within the regional scale allowed us to avoid the temporal and spatial variability of climate effects on sap flow. A relatively flat terrain across subplots also allowed us to control the effects of slope, aspect, and topography-related solar incidence angle on sap flow. Sap flow was strongly spatially autocorrelated, so OLS models failed to take spatial autocorrelation into account unless to some extent, depending on the spatial distribution of samples, by including latitude and/or longitude in the models. Among spatial regression models, spatial error models performed better than lag models, allowing to capture the effects of unmeasured independent variables. Sap flow variability for the most part (∼70%) was explained by the landscape-level variable of elevation followed by the stand-level variable of tree density, and the remaining part by variables related to tree characteristics; a nested down-scaling function, defined and visualized for the first time. Therefore, thinning forest stands and future plantations with optimum distances, based on the elevation gradients, may be required to counterbalance the allocation of resources, e.g. water, nutrients, and light, among trees, leading to enhance forest health and resiliency against water-stress stimuli.

Funder

VIVEK

Faculty of Forestry and Wood Sciences

Czech University of Life Sciences, Prague

Slovak Research and Development Agency

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3